Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Hearts ; 4(4): 97-117, dez.2023. ilus
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1530621

RESUMO

Cardiomyopathies are major causes of heart failure. Chagas disease (CD) is caused by the parasite Trypanosoma cruzi, and it is endemic in Central and South America. Thirty percent of cases evolve into chronic chagas cardiomyopathy (CCC), which has worse prognosis as compared with other cardiomyopathies. In vivo bioenergetic analysis and ex vivo proteomic analysis of myocardial tissues highlighted worse mitochondrial dysfunction in CCC, and previous studies identified nuclear-encoded mitochondrial gene variants segregating with CCC. Here, we assessed the role of the mitochondrial genome through mtDNA copy number variations and mtDNA haplotyping and sequencing from heart or blood tissues of severe, moderate CCC and asymptomatic/indeterminate Chagas disease as well as healthy controls as an attempt to help decipher mitochondrial-intrinsic genetic involvement in Chagas disease development. We have found that the mtDNA copy number was significantly lower in CCC than in heart tissue from healthy individuals, while blood mtDNA content was similar among asymptomatic Chagas disease, moderate, and severe CCC patients. An MtDNA haplogrouping study has indicated that African haplogroups were over represented in the Chagas subject groups in comparison with healthy Brazilian individuals. The European lineage is associated with protection against cardiomyopathy and the macro haplogroup H is associated with increased risk towards CCC. Using mitochondria DNA sequencing, 84 mtDNA-encoded protein sequence pathogenic variants were associated with CCC. Among them, two variants were associated to left ventricular non-compaction and two to hypertrophic cardiomyopathy. The finding that mitochondrial protein-coding SNPs and mitochondrial haplogroups associate with risk of evolving to CCC is consistent with a key role of mitochondrial DNA in the development of chronic chagas disease cardiomyopathy.

2.
J Nucl Cardiol ; 30(6): 2327-2337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37165114

RESUMO

BACKGROUND: Myocardial perfusion defect (MPD) is common in chronic Chagas cardiomyopathy (CCC) and is associated with inflammation and development of left ventricular systolic dysfunction. We tested the hypothesis that pentoxifylline (PTX) could reduce inflammation and prevent the development of MPD in a model of CCC in hamsters. METHODS AND RESULTS: We investigated with echocardiogram and rest myocardial perfusion scintigraphy at baseline (6-months after T. cruzi infection/saline) and post-treatment (after additional 2-months of PTX/saline administration), female Syrian hamsters assigned to 3 groups: T. cruzi-infected animals treated with PTX (CH + PTX) or saline (CH + SLN); and uninfected control animals (CO). At the baseline, all groups showed similar left ventricular ejection fraction (LVEF) and MPD areas. At post-treatment evaluation, there was a significant increase of MPD in CH + SLN group (0.8 ± 1.6 to 9.4 ± 9.7%), but not in CH + PTX (1.9 ± 3.0% to 2.7 ± 2.7%) that exhibited MPD area similar to CO (0.0 ± 0.0% to 0.0 ± 0.0%). The LVEF decreased in both infected groups. Histological analysis showed a reduced inflammatory infiltrate in CH + PTX group (395.7 ± 88.3 cell/mm2), as compared to CH + SLN (515.1 ± 133.0 cell/mm2), but larger than CO (193.0 ± 25.7 cell/mm2). The fibrosis and TNF-α expression was higher in both infected groups. CONCLUSIONS: The prolonged use of PTX is associated with positive effects, including prevention of MPD development and reduction of inflammation in the chronic hamster model of CCC.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Pentoxifilina , Cricetinae , Animais , Feminino , Cardiomiopatia Chagásica/diagnóstico por imagem , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda , Tomografia Computadorizada por Raios X , Inflamação , Perfusão
3.
Biomedicines ; 10(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36140315

RESUMO

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, affects 8 million people, and around 1/3 develop chronic cardiac (CCC) or digestive disease (megaesophagus/megacolon), while the majority remain asymptomatic, in the indeterminate form of Chagas disease (ASY). Most CCC cases in families with multiple Chagas disease patients carry damaging mutations in mitochondrial genes. We searched for exonic mutations associated to chagasic megaesophagus (CME) in genes essential to mitochondrial processes. We performed whole exome sequencing of 13 CME and 45 ASY patients. We found the damaging variant MRPS18B 688C > G P230A, in five out of the 13 CME patients (one of them being homozygous; 38.4%), while the variant appeared in one out of 45 ASY patients (2.2%). We analyzed the interferon (IFN)-γ-induced nitro-oxidative stress and mitochondrial function of EBV-transformed lymphoblastoid cell lines. We found the CME carriers of the mutation displayed increased levels of nitrite and nitrated proteins; in addition, the homozygous (G/G) CME patient also showed increased mitochondrial superoxide and reduced levels of ATP production. The results suggest that pathogenic mitochondrial mutations may contribute to cytokine-induced nitro-oxidative stress and mitochondrial dysfunction. We hypothesize that, in mutation carriers, IFN-γ produced in the esophageal myenteric plexus might cause nitro-oxidative stress and mitochondrial dysfunction in neurons, contributing to megaesophagus.

4.
Front Immunol ; 13: 958200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072583

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/genética , Epigênese Genética , Humanos , Fatores de Transcrição/genética
5.
Front. immunol ; 13(958200): 01-16, Aug. 2022. graf, ilus, tab
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1400349

RESUMO

Abstract: Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.


Assuntos
Humanos , Cardiomiopatia Chagásica , Doença de Chagas/genética , Fatores de Transcrição/genética , Trypanosoma cruzi , Epigênese Genética , Metilação
6.
Vaccine ; 40(2): 239-246, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34961636

RESUMO

Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7-11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.


Assuntos
Vacinas contra a AIDS , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinas contra a AIDS/imunologia , Animais , Genes MHC da Classe II , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
7.
Transplantation ; 106(2): 289-298, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33859149

RESUMO

BACKGROUND: Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS: Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6 h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs in the heart, and computational and functional analyses were performed to compare the differentially expressed miRNAs and find their putative targets and their related enriched canonical pathways. RESULTS: An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with 2 miRNAs, miR-30a-3p, and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS: These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD-induced miRNA's on early and late cardiac allograft function must be investigated.


Assuntos
Transplante de Coração , MicroRNAs , Animais , Morte Encefálica , Transplante de Coração/efeitos adversos , Humanos , MicroRNAs/genética , Ratos , Ratos Wistar , Solução Salina Hipertônica/farmacologia , Solução Salina Hipertônica/uso terapêutico , Doadores de Tecidos
8.
Vaccine, v. 40, n. 2, p. 239-246, jan. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4092

RESUMO

Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+ and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7–11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.

9.
Front Immunol ; 12: 755862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867992

RESUMO

Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes' mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Interferon gama/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Idoso , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/fisiopatologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Adulto Jovem
10.
J Clin Immunol ; 41(5): 1048-1063, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660144

RESUMO

Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. METHODS: We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. RESULTS: We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction. CONCLUSION: Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.


Assuntos
Cardiomiopatia Chagásica/genética , Inflamação/genética , Mitocôndrias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma
11.
Front Immunol ; 12: 775346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095849

RESUMO

A variety of signaling pathways are involved in the induction of innate cytokines and CD8+ T cells, which are major players in protection against acute Trypanosoma cruzi infection. Previous data have demonstrated that a TBK-1/IRF3-dependent signaling pathway promotes IFN-ß production in response to Trypanosoma cruzi, but the role for STING, a main interactor of these proteins, remained to be addressed. Here, we demonstrated that STING signaling is required for production of IFN-ß, IL-6, and IL-12 in response to Trypanosoma cruzi infection and that STING absence negatively impacts activation of IRF-dependent pathways in response to the parasite. We reported no significant activation of IRF-dependent pathways and cytokine expression in RAW264.7 macrophages in response to heat-killed trypomastigotes. In addition, we showed that STING is essential for T. cruzi DNA-mediated induction of IFN-ß, IL-6, and IL-12 gene expression in RAW264.7 macrophages. We demonstrated that STING-knockout mice have significantly higher parasitemia from days 5 to 8 of infection and higher heart parasitism at day 13 after infection. Although we observed similar heart inflammatory infiltrates at day 13 after infection, IFN-ß, IL-12, CXCL9, IFN-γ, and perforin gene expression were lower in the absence of STING. We also showed an inverse correlation between parasite DNA and the expression of CXCL9, IFN-γ, and perforin genes in the hearts of infected animals at day 13 after infection. Finally, we reported that STING signaling is required for splenic IFN-ß and IL-6 expression early after infection and that STING deficiency results in lower numbers of splenic parasite-specific IFN-γ and IFN-γ/perforin-producing CD8+ T cells, indicating a pivotal role for STING signaling in immunity to Trypanosoma cruzi.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Citocinas/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Quimiocina CXCL9/imunologia , Interferon gama/imunologia , Interleucina-12/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/imunologia , Perforina/imunologia , Células RAW 264.7 , Trypanosoma cruzi/imunologia
12.
Front Immunol, v. 12, 755862, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4019

RESUMO

Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes’ mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.

13.
Br J Cancer ; 123(4): 534-541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499569

RESUMO

BACKGROUND: Host-microbiota interactions shape T-cell differentiation and promote tumour immunity. Although IL-9-producing T cells have been described as potent antitumour effectors, their role in microbiota-mediated tumour control remains unclear. METHODS: We analysed the impact of the intestinal microbiota on the differentiation of colonic lamina propria IL-9-producing T cells in germ-free and dysbiotic mice. Systemic effects of the intestinal microbiota on IL-9-producing T cells and the antitumour role of IL-9 were analysed in a model of melanoma-challenged dysbiotic mice. RESULTS: We show that germ-free mice have lower frequency of colonic lamina propria IL-9-producing T cells when compared with conventional mice, and that intestinal microbiota reconstitution restores cell frequencies. Long-term antibiotic treatment promotes host dysbiosis, diminishes intestinal IL-4 and TGF-ß gene expression, decreases the frequency of colonic lamina propria IL-9-producing T cells, increases the susceptibility to tumour development and reduces the frequency of IL-9-producing T cells in the tumour microenvironment. Faecal transplant restores intestinal microbiota diversity, and the frequency of IL-9-producing T cells in the lungs of dysbiotic animals, restraining tumour burden. Finally, recombinant IL-9 injection enhances tumour control in dysbiotic mice. CONCLUSIONS: Host-microbiota interactions are required for adequate differentiation and antitumour function of IL-9-producing T cells.


Assuntos
Antibacterianos/efeitos adversos , Disbiose/imunologia , Vida Livre de Germes , Interleucina-9/metabolismo , Melanoma/microbiologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Disbiose/induzido quimicamente , Disbiose/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Interleucina-4/metabolismo , Masculino , Melanoma/imunologia , Camundongos , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Transplante de Neoplasias , Linfócitos T/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
14.
Front Immunol ; 11: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391011

RESUMO

Changing the immune responses to allergens is the cornerstone of allergen immunotherapy. Allergen-specific immunotherapy that consists of repeated administration of increasing doses of allergen extract is potentially curative. The major inconveniences of allergen-specific immunotherapy include failure to modify immune responses, long-term treatment leading to non-compliance and the potential for developing life-threating anaphylaxis. Here we investigated the effect of a novel liposomal formulation carrying low dose of allergen combined with CpG-ODN, a synthetic TLR9 agonist, on established allergic lung inflammation. We found that challenge with allergen (OVA) encapsulated in cationic liposome induced significantly less severe cutaneous anaphylactic reaction. Notably, short-term treatment (three doses) with a liposomal formulation containing co-encapsulated allergen plus CpG-ODN, but not allergen or CpG-ODN alone, reversed an established allergic lung inflammation and provided long-term protection. This liposomal formulation was also effective against allergens derived from Blomia tropicalis mite extract. The attenuation of allergic inflammation was not associated with increased numbers of Foxp3-positive or IL-10-producing regulatory T cells or with increased levels of IFN-gamma in the lungs. Instead, the anti-allergic effect of the liposomal formulation was dependent of the innate immune signal transduction generated in CD11c-positive putative dendritic cells expressing MyD88 molecule. Therefore, we highlight the pivotal role of dendritic cells in mediating the attenuation of established allergic lung inflammation following immunotherapy with a liposomal formulation containing allergen plus CpG-ODN.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Alérgenos/administração & dosagem , Asma/imunologia , Células Dendríticas/imunologia , Dessensibilização Imunológica/métodos , Sistemas de Liberação de Medicamentos/métodos , Fator 88 de Diferenciação Mieloide/metabolismo , Oligodesoxirribonucleotídeos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Alérgenos/efeitos adversos , Anafilaxia/imunologia , Anafilaxia/prevenção & controle , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Resultado do Tratamento
15.
PLoS One ; 15(1): e0228393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004356

RESUMO

Chronic exposure to ambient levels of air pollution induces respiratory illness exacerbation by increasing inflammatory responses and apoptotic cells in pulmonary tissues. The ineffective phagocytosis of these apoptotic cells (efferocytosis) by macrophages has been considered an important factor in these pathological mechanisms. Depending on microenvironmental stimuli, macrophages can assume different phenotypes with different functional actions. M1 macrophages are recognized by their proinflammatory activity, whereas M2 macrophages play pivotal roles in responding to microorganisms and in efferocytosis to avoid the progression of inflammatory conditions. To verify how exposure to air pollutants interferes with macrophage polarization in emphysema development, we evaluated the different macrophage phenotypes in a PPE- induced model with the exposure to diesel exhaust particles. C57BL/6 mice received intranasal instillation of porcine pancreatic elastase (PPE) to induce emphysema, and the control groups received saline. Both groups were exposed to diesel exhaust particles or filtered air for 60 days according to the groups. We observed that both the diesel and PPE groups had an increase in alveolar enlargement, collagen and elastic fibers in the parenchyma and the number of macrophages, lymphocytes and epithelial cells in BAL, and these responses were exacerbated in animals that received PPE instillation prior to exposure to diesel exhaust particles. The same response pattern was found inCaspase-3 positive cell analysis, attesting to an increase in cell apoptosis, which is in agreement with the increase in M2 phenotype markers, measured by RT-PCR and flow cytometry analysis. We did not verify differences among the groups for the M1 phenotype. In conclusion, our results showed that both chronic exposure to diesel exhaust particles and PPE instillation induced inflammatory conditions, cell apoptosis and emphysema development, as well as an increase in M2 phenotype macrophages, and the combination of these two factors exacerbated these responses. The predominance of the M2-like phenotype likely occurred due to the increased demand for efferocytosis. However, M2 macrophage activity was ineffective, resulting in emphysema development and worsening of symptoms.


Assuntos
Poluentes Atmosféricos/toxicidade , Macrófagos/metabolismo , Elastase Pancreática/efeitos adversos , Enfisema Pulmonar/imunologia , Emissões de Veículos/toxicidade , Administração Intranasal , Animais , Apoptose , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/administração & dosagem , Enfisema Pulmonar/induzido quimicamente
16.
Front Immunol ; 10: 67, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761137

RESUMO

Th9 cells orchestrate allergic lung inflammation by promoting recruitment and activation of eosinophils and mast cells, and by stimulating epithelial mucus production, which is known to be mainly dependent on IL-9. These cells share developmental pathways with induced regulatory T cells that may determine the generation of one over the other subset. In fact, the FOXP3 transcription factor has been shown to bind il9 locus and repress IL-9 production. The microbiota-derived short-chain fatty acids (SCFAs) butyrate and propionate have been described as FOXP3 inducers and are known to have anti-inflammatory properties. While SCFAs attenuate lung inflammation by inducing regulatory T cells and suppressing Th2 responses, their effects on Th9 cells have not been addressed yet. Therefore, we hypothesized that SCFAs would have a protective role in lung inflammation by negatively modulating differentiation and function of Th9 cells. Our results demonstrated that butyrate is more effective than propionate in promoting FOXP3 expression and IL-9 repression. In addition, propionate was found to negatively impact in vitro differentiation of IL-13-expressing T cells. Butyrate treatment attenuated lung inflammation and mucus production in OVA-challenged mice, which presented lower frequency of lung-infiltrated Th9 cells and eosinophils. Both Th9 cell adoptive transfer and IL-9 treatment restored lung inflammation in butyrate-treated OVA-challenged mice, indicating that the anti-inflammatory effects of butyrate may rely on suppressing Th9-mediated immune responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Butiratos/uso terapêutico , Interleucina-9/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Transferência Adotiva , Animais , Butiratos/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Eosinófilos/imunologia , Fatores de Transcrição Forkhead/metabolismo , Interleucina-13/metabolismo , Interleucina-9/administração & dosagem , Interleucina-9/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/farmacologia , Pneumonia/induzido quimicamente , Propionatos/administração & dosagem , Propionatos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo
17.
Front Immunol ; 9: 2791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559742

RESUMO

Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.


Assuntos
Cardiomiopatia Chagásica/imunologia , Doença de Chagas/imunologia , Tolerância Imunológica/imunologia , Trypanosoma cruzi/imunologia , Progressão da Doença , Coração/parasitologia , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Células Th1/imunologia , Células Th1/parasitologia
18.
Cell Rep ; 19(11): 2272-2288, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614714

RESUMO

The underlying mechanism by which MyD88 regulates the development of obesity, metainflammation, and insulin resistance (IR) remains unknown. Global deletion of MyD88 in high-fat diet (HFD)-fed mice resulted in increased weight gain, impaired glucose homeostasis, elevated Dectin-1 expression in adipose tissue (AT), and proinflammatory CD11c+ AT macrophages (ATMs). Dectin-1 KO mice were protected from diet-induced obesity (DIO) and IR and had reduced CD11c+ AT macrophages. Dectin-1 antagonist improved glucose homeostasis and decreased CD11c+ AT macrophages in chow- and HFD-fed MyD88 KO mice. Dectin-1 agonist worsened glucose homeostasis in MyD88 KO mice. Dectin-1 expression is increased in AT from obese individuals. Together, our data indicate that Dectin-1 regulates AT inflammation by promoting CD11c+ AT macrophages in the absence of MyD88 and identify a role for Dectin-1 in chronic inflammatory states, such as obesity. This suggests that Dectin-1 may have therapeutic implications as a biomarker for metabolic dysregulation in humans.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/genética , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Obesidade/genética , Animais , Humanos , Masculino , Camundongos
19.
FASEB J ; 31(1): 320-332, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729414

RESUMO

Nicotinic α-7 acetylcholine receptor (nAChRα7) is a critical regulator of cholinergic anti-inflammatory actions in several diseases, including acute respiratory distress syndrome (ARDS). Given the potential importance of α7nAChR as a therapeutic target, we evaluated whether PNU-282987, an α7nAChR agonist, is effective in protecting the lung against inflammation. We performed intratracheal instillation of LPS to generate acute lung injury (ALI) in C57BL/6 mice. PNU-282987 treatment, either before or after ALI induction, reduced neutrophil recruitment and IL-1ß, TNF-α, IL-6, keratinocyte chemoattractant (KC), and IL-10 cytokine levels in the bronchoalveolar lavage fluid (P < 0.05). In addition, lung NF-κB phosphorylation decreased, along with collagen fiber deposition and the number of matrix metalloproteinase-9+ and -2+ cells, whereas the number of tissue inhibitor of metalloproteinase-1+ cells increased (P < 0.05). PNU-282987 treatment also reduced lung mRNA levels and the frequency of M1 macrophages, whereas cells expressing the M2-related markers CD206 and IL-10 increased, suggesting changes in the macrophage profile. Finally, PNU-282987 improved lung function in LPS-treated animals. The collective results suggest that PNU-282987, an agonist of α7nAChR, reduces LPS-induced experimental ALI, thus supporting the notion that drugs that act on α7nAChRs should be explored for ARDS treatment in humans.-Pinheiro, N. M., Santana, F. P. R., Almeida, R. R., Guerreiro, M., Martins, M. A., Caperuto, L. C., Câmara, N. O. S., Wensing, L. A., Prado, V. F., Tibério, I. F. L. C., Prado, M. A. M., Prado, C. M. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Benzamidas/uso terapêutico , Compostos Bicíclicos com Pontes/uso terapêutico , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Masculino , Camundongos , RNA/genética , RNA/metabolismo
20.
Cell Reports ; 19(11): 2272-2288, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15153

RESUMO

The underlying mechanism by which MyD88 regulates the development of obesity, metainflammation, and insulin resistance (IR) remains unknown. Global deletion of MyD88 in high-fat diet (HFD)fed mice resulted in increased weight gain, impaired glucose homeostasis, elevated Dectin-1 expression in adipose tissue (AT), and proinflammatory CD11c+ AT macrophages (ATMs). Dectin-1 KO mice were protected from diet-induced obesity (DIO) and IR and had reduced CD11c+ AT macrophages. Dectin-1 antagonist improved glucose homeostasis and decreased CD11c+ AT macrophages in chow-and HFD-fed MyD88 KO mice. Dectin-1 agonist worsened glucose homeostasis in MyD88 KO mice. Dectin-1 expression is increased in AT from obese individuals. Together, our data indicate that Dectin-1 regulates AT inflammation by promoting CD11c+ AT macrophages in the absence of MyD88 and identify a role for Dectin-1 in chronic inflammatory states, such as obesity. This suggests that Dectin-1 may have ther-apeutic implications as a biomarker for metabolic dysregulation in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...